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This paper examines the behavior of flux and slope limiters on non-uniform grids in
multiple dimensions. Many slope limiters in standard use do not preserve linear solutions
on irregular grids impacting both accuracy and convergence. We rewrite some well-known
limiters to highlight their underlying symmetry, and use this form to examine the proper-
ties of both traditional and novel limiter formulations on non-uniform meshes. A consistent
method of handling stretched meshes is developed which is both linearity preserving for
arbitrary mesh stretchings and reduces to common limiters on uniform meshes. In multiple
dimensions we analyze the monotonicity region of the gradient vector and show that the
multidimensional limiting problem may be cast as the solution of a linear programming
problem. For some special cases we present a new directional limiting formulation that
preserves linear solutions in multiple dimensions on irregular grids. Computational results
using model problems and complex three-dimensional examples are presented, demonstrat-
ing accuracy, monotonicity and robustness.

I. Introduction

For many finite-difference or finite-volume computations with discontinuous solutions limiters are a nec-
essary evil. On one hand, they suppress oscillations and maintain monotonicity. On the other hand,

they reduce accuracy and can hamper convergence, particularly for multidimensional unstructured grids.1

Non-smooth limiter formulations lead to limiter chatter, even in near constant portions of the flow field, mak-
ing it difficult to achieve steady state either with time marching or Newton’s method.2 Overly-compressive
limiters in some cases cause staircasing of oblique shocks. These problems occur on both structured and
unstructured grids, in both flux and slope-limiter formulations.

Most of the research on limiters has been in one space dimension, where a reliable theory exists.3 There
is substantially less literature on extensions to two or more dimensions, where the existing theory has proven
less useful for developing numerical methods. There is almost no discussion on the application of limiters to
irregular or non-uniform grids (with some exceptions4–6) although nearly all meshes on real geometries fall
into this category. Note that ENO and WENO schemes7 avoid the use of limiters by expending the effort
to determine a non-oscillatory gradient.

The focus of this paper is a framework for analyzing limiter formulations on irregular grids, including 1-D
cell stretching and general polyhedra in 3-D. This analysis provides conditions under which slope limiters
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preserve monotonicity, and exactly reproduce linear solutions (called k-exact for k=1). These conditions are
demonstrated as necessary for both solution accuracy, and reducing limiter chatter. With this framework,
an understanding of methods currently in practice for irregular grids, along with novel limiter formulations,
are developed.

The use of multi-level Cartesian grids with embedded boundaries8 motivates the development. These
grids provide an attractive numerical testbed, since they include regions of uniform grid cells, mesh interfaces
with 2:1 mesh stretching, as well as general irregular polyhedra at the embedded boundaries. Examples of
monotone, linearity-preserving limiters for all three cell types are included. These limiter examples are used
in 3-D numerical experiments to demonstrate the behavior in practical cases.

After a brief review of common flux and slope limiters in one dimension, we develop a symmetric for-
mulation of several common limiters in Section 2. This framework is used to analyze linearity preservation
and monotonicity on 1-D stretched-meshes in Section 3. Section 4 extends these ideas to multiple dimen-
sions by formulating slope limiters as the solution of a linear-programming problem. Numerical experiments
on 3-D problems demonstrate the accuracy, convergence, and robustness of example limiters in Section 5.
We include 2 appendices. Appendix A examines face-based limiters and the common approach of flooring
non-physical reconstructed values. Appendix B contains an accuracy study on one-dimensional non-uniform
grids to support the main text.

II. One-Dimensional Preliminaries

A. Flux Limiters

The most common framework for looking at limiters was systematized by Sweby9 using the flux formulation.
By analogy with Flux Corrected Transport,10 one writes a second-order scheme as a first-order scheme plus
a limited anti-diffusive flux, shown here for the case of linear advection ut + aux = 0, a > 0, as

un+1
i = un

i − λ(ui − ui−1)− (ψiFi+1/2 − ψi−1Fi−1/2)

where the anti-diffusive flux is Fi+1/2 = 1
2λ(1−λ)(ui+1−ui). Here the ψi’s are the flux limiters, and λ = a∆t

∆x .
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Figure 1. The shaded region is the second order TVD
region from.9 Common flux limiters ψ from (3) are
shown lying in the Sweby region.

Define the ratio R of forward to backward differ-
ences in the solution (note that R is the inverse of
Sweby’s r) as

Ri =
ui+1 − ui

ui − ui−1
. (1)

By choosing ψi = ψ(Ri) properly, a total-variation-
diminishing (TVD) scheme can be achieved. Sweby
derives the well-known result

0 ≤
(

ψ(R)
R

, ψ(R)
)
≤ 2.

This is often expressed graphically for the different
possible limiters using the Sweby diagram shown in
Figure 1: choosing ψ in the shaded region leads to
a second-order TVD solution. An important point
to note is that for second order accuracy away from
extrema, the limiter must satisfy ψ(1) = 1. In other

words, the method should not do any limiting when the solution is a linear function. Also ψ must be
symmetric,

ψ(R)
R

= ψ(
1
R

), (2)
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although this symmetry is not immediately apparent in Figure 1. Later we rewrite the limiters in a more
transparently symmetric form. In (3) we list several limiters of interest which satisfy the symmetry relation
(2), in order of increasing dissipation for R ≥ 0. For all limiters, a negative value of R indicates an extremum
in the solution at cell i, and all set ψ(R ≤ 0) = 0 . For R ≥ 0, the limiters are

(superbee) ψsb(R) = min[max{1, R}, 2, 2R]

(Barth− Jespersen) ψBJ (R) =
1
2
(R + 1)min{min(1,

4R

R + 1
), min(1,

4
R + 1

)}

(van Leer) ψV L(R) =
2R

R + 1
(3)

(van Albada) ψV A(R) =
R2 + R

R2 + 1
(min) ψmin(R) = min{1, R}.

In Figure 1, superbee follows the boundary of the TVD region. It is easy to show that while it remains
monotone it can actually steepen the gradient. The superbee and Barth-Jespersen limiters are the most
compressive, and are known to turn smooth waves into square waves. In multiple dimensions their overly
compressive nature may lead to staircasing of discontinuities that are not aligned with the grid. Since
superbee is impractical for most real applications, we will not discuss it further.

B. Slope Limiters

Spekreijse11 shows the equivalence of flux limiting with slope limiting, which is more natural for finite volume
schemes in REP form:12 Reconstruct the solution from its cell averages, Evolve the reconstructed solution
from time tn to tn+1, and Project the solution back onto the grid to update the integral cell averages at the
new time. We can see this by computing states in the flux form for linear advection, using the one-sided
differences from the Fromm scheme. Computing the states at the cell interfaces gives

uL
i+1/2 = ui +

1
2
ψ(Ri) (ui − ui−1)

uR
i−1/2 = ui − 1

2
ψ(1/Ri) (ui+1 − ui)

(4)

where uL
i+1/2 is the left state at the right edge, etc. Requiring that this be equivalent to reconstructing with

a single limited gradient in cell i, and using the central difference (ui+1 − ui−1)/2h, gives

uL
i+1/2 = ui +

1
2
φ(Ri) (ui+1 − ui−1)/2

uR
i−1/2 = ui − 1

2
φ(1/Ri)(ui+1 − ui−1)/2

(5)

Thus using (2) we get the relationship between a flux limiter ψ and a slope limiter φ

ψ(R) = φ(R)(
R + 1

2
). (6)

Slope limiters make the reconstruction step easy, by writing the reconstructed function Ui(x) in cell i as
Ui(x) = ui + φ(Ri)∇ui(x − xi), where ui is the cell average. Note that for any limiter ψ satisfying (2), φ
satisfies the slope form of the symmetry condition

φ(R) = φ(
1
R

). (7)
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Figure 2. Common limiters in slope form from (8).

Figure 2 shows the behavior of the same collec-
tion of limiters as Figure 1 (except for superbee) but
this time in their slope form. The common limiters
in slope form, simplifying the expressions for mono-
tone data so that R ≥ 0, are:

φBJ (R) = min{1,
4

R + 1
,

4R

R + 1
}

φV L(R) =
4R

(R + 1)2
(8)

φV A(R) =
2R

R2 + 1

φmin(R) = min{ 2
1 + R

,
2R

1 + R
}.

All the limiters should be zero at extrema, when
R ≤ 0.

C. Symmetric Form of Slope Limiters

While slope limiters in the form of Figure 2 are helpful, they are somewhat opaque since R can go off
to infinity and the symmetry expressed in (2) and (7) is not obvious. Here we present a more intuitive
form which recovers this symmetry and will help in developing and analyzing improved formulations for
non-uniform meshes.

In Figure 3 limiters are plotted using the independent variable f = (ui − ui−1)/(ui+1 − ui−1). As the
solution ui varies from ui−1 to ui+1, f varies between 0 and 1. This graphical form more clearly relates the
location of ui to the limiter value. This form has the added benefit that we can more easily see the behavior
of the limiter for large R.

To plot the limiters as a function of f , define w(f) = φ(R(f)) and use the symmetry property (7) to get

w(f) = φ(R(f)) = φ(
1− f

f
) = φ(

1
R

) = φ(
f

1− f
) = w(1− f) (9)

showing that on uniform grids the graph should be symmetric about f = 1
2 . This is clearly seen in Figure 3.

On uniform meshes f = 1
2 corresponds to linear data for u.

It becomes obvious that it is the neighbor of ui with the larger jump, either ui+1 or ui−1 that causes the
limiting of ui’s slope, since it is this jump that would cause the overshoot at the opposite neighbor’s face.

In these variables the common limiters become

wBJ (f) = min{1, 4f, 4(1− f)}
wV L(f) = 4f(1− f)
wsin(f) = sin(π f) (10)

wV A(f) =
2f (1− f)

f2 + (1− f)2

wmin(f) = min{2f, 2(1− f)}.

This symmetric form also makes it easy to devise new limiters. For example, included in Figure 3(a) and
equation (10) is a new sin limiter. In the symmetric form, it is

wsin(1− f) = sin(π − πf) = − sin(−πf) = wsin(f). (11)
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Figure 3. (a) Symmetric form of slope limiters. (b) Cell averages corresponding to the limiters. When
ui is exactly in the middle, the data is linear, f = .5, and the limiter is 1. The undivided differences are
∆− = ui − ui−1, and ∆+ = ui+1 − ui. J is the total jump ui+1 − ui−1.

In the usual notation

φsin = sin(
πR

R + 1
) = sin(

π(R + 1)
R + 1

− πR + 1) = sin(
π

R + 1
). (12)

which is also symmetric according to (7). This limiter is continuously differentiable, does not limit linear
data, satisfies the symmetry property (7), and falls between the van Leer and van Albada limiters in terms
of dissipation.

III. Limiters on Non-Uniform Meshes

Monotone solutions on non-uniform grids require that both gradients and limiters sense the mesh ir-
regularity. We use the symmetric form of limiters to highlight pitfalls in the standard formulation and
to generalize the limiters of Eq. 10 for non-uniform grids without sacrificing smoothness, monotonicity, or
linearity preservation.

A. TVD Condition on Non-Uniform Meshes

The TVD condition on uniform meshes in one dimension provides slope conditions under which the variation
in the solution at a given time does not increase at the next time step. These conditions are: at an extremum
the gradient is set to zero; when the solution in a cell is reconstructed to each of its cell edges, it should be
limited such that its magnitude does not exceed the adjacent neighbor’s cell-centered solution. The latter is
often stated as the gradient should not exceed twice the forward or backward difference, if they are all the
same sign. On uniform grids this is equivalent to the algebraic definition of the Barth-Jespersen limiter in
(8), which can be seen by substituting (1) for R and simplifying. This geometric limiting was first proposed
by van Leer,13 but it is not what is known now as the van Leer limiter. In some communities it is known as
monotonized central differences. This geometric interpretation also guarantees that if the neighboring cells
satisfy physical constraints, for example that density remains positive, then the reconstructed solution will
satisfy the same constraints.
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In this section we briefly derive the TVD condition for a non-uniform grid in one dimension, and show
that the geometric condition still holds. What changes is that the bounding quantities are no longer twice
the forward and backward differences. To show this, look at ut + aux = 0, for a > 0. We will use the simple
discretization of Forward Euler in time, however the same TVD property holds for the second order in time
MUSCL scheme with slightly more complicated inequalities. The upwind finite volume scheme with second
order differencing in space on a non-uniform grid is

un+1
i = un

i −
a∆t

hi
[uL

i+1/2 − uL
i−1/2]. (13)

Here the superscript L indicates the upwind flux is evaluated using the reconstructed state on the left of the
interface,

uL
i+1/2 = ui +

hi

2
Si, (14)

where Si = φiDi is the BJ-limited slope at cell i, and Di is the approximate derivative in that cell.
To show a scheme is TVD, we show first that a monotone increasing solution remains monotone, and

second, if un
i is a local maximum, then un+1

i ≤ un
i . The monotone decreasing and local minimum case is

analogous.
Given monotonically increasing data un

i−1 ≤ un
i ≤ un

i+1, at the left state we have

uL
i−1/2 = ui−1 +

hi−1

2
Si−1 ≤ un

i . (15)

Similarly, uL
i+1/2 ≥ un

i , since the slope at cell i is positive. From (13) this gives

un+1
i ≤ un

i −
a∆t

hi
[un

i − un
i ] = un

i (16)

To bound un+1
i from below we use the relation ui− hi

2 Si ≥ ui−1 Starting from (13), abbreviating λi = a∆t
hi

,
and using Si−1 ≥ 0 we get

un+1
i = un

i − λi[un
i +

hi

2
Si − (un

i−1 +
hi−1

2
Si−1)]

≥ un
i − λi(un

i + un
i − un

i−1) + λiu
n
i−1

= (1− 2λi)un
i + 2λiu

n
i−1 (17)

≥ un
i−1

Equation (17) holds since the region of stability for this scheme is λi ≤ 1/2, so the coefficients are positive.
Hence for monotone increasing data the values at time n + 1 interlace with those at time n so that

un+1
i−1 ≤ un

i−1 ≤ un+1
i ≤ un

i ... (18)

and the solution remains monotone at the next time step.
To show that maxima decrease, let cell i be a local maximum, so that un

i > un
i−1 and un

i > un
i+1. Then

the limited gradient Si = 0. Equation (13) becomes un+1
i = un

i − a∆t
hi

[un
i − un

i−1 − hi−1
2 Si−1], with Si−1 ≥ 0.

For the maximum to be non-increasing the terms in brackets must be positive since a is positive, so that
[un

i −un
i−1− hi−1

2 Si−1] ≥ 0, or Si−1 ≤ 2(ui−ui−1)
hi−1

, which we have already seen above. On non-uniform meshes
this is not equivalent to the backward difference at cell i, since the mesh spacing is not the average of the two
cells’ mesh widths. Thus, the TVD condition that the limited slope must satisfy for monotonically increasing
data on non-uniform meshes is

Si = φiDi = min
{

2(ui+1 − ui)
hi

,
2(ui − ui−1)

hi

}
(19)

where Di is the discrete approximation to the gradient ∇ui.
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B. Least Squares Gradient on Non-Uniform Meshes

On non-uniform grids the first question is what slope to actually limit. After all, there are many gener-
alizations to a uniform grid central difference gradient. On irregular or unstructured meshes, a common
procedure that extends to multiple dimensions is to approximate the gradient at cell i using a least squares
fit to the solution in neighboring cells.14 Least squares yields first-order slope estimates which are sufficient
for second-order accuracy overall. Additionally, even on distorted meshes, least squares gradients remain
exact for linear data. Limiting, however, can destroy this property.

In one space dimension the least squares gradient is especially simple. Let xi−1, xi and xi+1 be the centers
of three adjacent cells on an irregular mesh with approximate solution ui−1, ui and ui+1. The least squares
problem is to find the slope DL in cell i to minimize the residual of

[
xi+1 − xi

xi−1 − xi

]
[DLi] =

[
ui+1 − ui

ui−1 − ui

]
. (20)

Forming the normal equations and solving for DLi results in the approximation

DLi =
h2

+

h2
+ + h2−

D+ui +
h2
−

h2
+ + h2−

D−ui (21)

where h+ = xi+1 − xi, h− = xi − xi−1, D+ui = (ui+1 − ui)/h+, etc. Note that the least squares gradient
(21) is a convex combination of the forward and backward differences computed on the irregular mesh. If the
mesh is uniform, h+ = h−, the weights become 1/2 each, and we recover the familiar second-order centered
first derivative stencil

Dcui =
(D+ui + D−ui)

2
=

ui+1 − ui−1

2h
(22)

On a non-uniform mesh a second order accurate gradient approximation is of course possible, but it does not
minimize the least squares error of the linear fit. The second order non-uniform approximation is a linear
combination with different weights, Di = h+

h++h−
D+ui + h−

h++h−
D−ui. However in multiple dimensions this

approach is much more expensive.

C. Limiting for Linear Data

If mesh stretching is not accounted for in the limiter formulations, unexpected limiting can reduce the solution
accuracy. For many limiters in common use today, (with notable exceptions4,15), even linear solutions will
be limited on a non-uniform mesh, leading to a loss of accuracy.

Let (1) be applied to linear data with slope s on a mesh with constant stretching ratio a, so that
(xi − xi−1) = a · (xi+1 − xi). We get

R =
ui+1 − ui

ui − ui−1
=

s · (xi+1 − xi)
s · (xi − xi−1)

= a. (23)

On a uniform grid this ratio is unity, but on a stretched mesh it isn’t, so all limiters except Barth-Jespersen
will activate and fail to preserve the linear data. For example, if a = 1.2, the min limiter using (8) gives
φ = .90. Luckily the van Leer limiter gives φ = .99, and van Albada gives φ = .98, which are less severe
for this modest stretching ratio. For an abrupt mesh refinement in space with hi+1 = 2 · hi, R = 3

4 and the
uncorrected limiters are φmin = 6/7, φV A = 0.96, and φV L = 0.98.

It is tempting to try modifying the limiter definitions for non-uniform grids by re-writing them using
scaled differences, or gradients. For example one could simply re-define R = ui+1−ui

ui−ui−1
to be

R′ =
D+

D−
. (24)
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Substituting into the van Leer limiter (8) gives

φV L(R′) =
D+D−

D2
c

(25)

on uniform meshes using (22), or simply left as

φV L(R′) =
4(D+D−)

(D+ + D−)2
or φV L(R′) =

D+D−
D2

L

(26)

for non-uniform meshes, where DL is the least squares gradient (21).
Since all the gradient approximations will exactly reconstruct a linear function, both forms in (26) are

now linearity preserving and won’t limit a linear solution on an irregular grid. Unfortunately it turns out
that none of these limiters lie entirely inside the TVD region on a general irregular mesh. To be able to
find a generalization that stays within the TVD bounds (19), we will examine them more closely using the
symmetric form of the previous section.

D. Symmetric Form for Non-Uniform Meshes

The goal of this section is to develop a smooth limiter that remains TVD on irregular grids. Since none of the
obvious generalizations above are TVD, a more delicate approach is needed. To understand the difficulties,
we look at the TVD limit (19), as well as the generalization of the min limiter, which is simple to derive.
A comparison of these two, which bracket the smooth limiters in the uniform case, illustrates the difficulty
with the non-uniform case. We then propose several limiter formulations that lie in-between the min and
the TVD limit, all of which simplify to van Leer on uniform grids.

Define the mesh stretching ratios on either side of ui with

a = hi−1/hi (27)
b = hi+1/hi (28)

so that

h+

h−
=

(hi+hi+1)
2

(hi+hi−1)
2

=
(1 + b)
(1 + a)

(29)

We will also need expressions for D+, D−, and DL, the least squares gradient (21), since the amount
of limiting needed will depend on which gradient is being limited. The expressions will involve the jump
J = ui+1 − ui−1, and the fraction f = (ui − ui−1)/J , giving

D− =
ui − ui−1

h−
=

2fJ

(1 + a)hi
(30)

D+ =
ui+1 − ui

h+
=

2(1− f)J
(1 + b)hi

(31)

DL =
(1 + b)(1− f) + (1 + a)f

(1 + b)2 + (1 + a)2
2J

hi
. (32)

We can now derive the symmetric form for the TVD limit and the min limiter on a non-uniform grid,
assuming monotone increasing data. For the TVD limit, (19) requires that the limited gradient be less than
a maximum value φtvdDL where

φtvdDL = min
{

2(ui − ui−1)
hi

,
2(ui+1 − ui)

hi

}
= min{f, (1− f)} 2J

hi
. (33)
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This has its peak when f = 1/2, where it takes the value

φtvdDL =
J

hi
. (34)

For the min limiter, which has a straightforward generalization to non-uniform meshes,

φminDL = min
{

(ui − ui−1)
h−

,
(ui+1 − ui)

h+

}
= min

{ (1− f)
(1 + b)

,
f

(1 + a)

} 2J
hi

. (35)

This function has a peak when the terms are equal, (e.g. the data is linear and D− = D+), which occurs
when f = fp, where

fp =
(1 + a)

2 + a + b
, (36)

and the limited slope takes the value

φminDL(fp) =
2

(2 + a + b)
J

hi
. (37)

Since a and b are positive, this peak value is less than that of the TVD peak value (34), and is 1/2 of the
peak on a uniform grid, as expected. As the mesh ratios a and b approach 0, the min peak approaches the
TVD peak. For non-unit mesh ratios, note that the peaks are not located at the same place.

0 0.2 0.4 0.6 0.8 1
f

0

0.2

0.4

0.6

0.8

1
J/hi  x

tvd limit
min limiter

f
p
 = (1+a)/(2+a+b)

f
p

Figure 4. The TVD slope limit and the
min limiter are shown here on non-uniform
meshes with mesh ratios a = .5 and b = 2
defined in (27) and (28) corresponding to a
mesh stretching of 2. The limiters are plot-
ted as a function of f = (ui − ui−1)/(ui+1 −
ui−1) using the symmetric form.

For both the TVD and min limiters, (33) and (35) are piece-
wise linear functions of f , and go to zero as f approaches 0 and
1. This is shown graphically in figure 4 for a mesh with a con-
stant stretching ratio of 2, corresponding to a = .5, b = 2.

All of the other limiters lie between the TVD and min lim-
iters. A limiter should also go through the min limiter peak,
since this implies a linear function will not be limited on the
irregular grid. (The TVD peak by contrast shows that the
gradient can be magnified and still be TVD.)

Figure 4 shows the problem with smooth limiters on non-
uniform grids. As the mesh stretching a and b go to 0, the min
and TVD limiters approach each other, leaving no room to
squeeze in a van Leer-like quadratic of any form. Instead, the
exponent must be variable and be flexible enough to approach
a linear function in the limit. This function should start at 0
when f = 0, and its gradient should be between the TVD and
min function gradient. It should interpolate the min peak, at
fp, the condition for preserving a linear function.

If a = 0 and b are large, the min limiter will lie very close to
the TVD limit on the left, but have lots of room on the right.
Thus figure 4 shows that we will need two different functions
for the generalization, one to the left of the peak, f ≤ fp, and

one to the right, f ≥ fp. They should be differentiable, and so the final interpolation condition for our
function is that it have a zero derivative at the peak, so both functions can match smoothly there. When
the mesh is uniform, we would like the limiter to recover the form of a standard smooth limiter like the van
Leer quadratic (8).

Several functions can be derived that have these properties. The one we use in the numerical experiments
is

φ1DL =





f [1− a
1+a ( f

fp
)

1
a ] 2J

hi
f ≤ fp

(1− f) [1− b
1+b (

1−f
fp

)
1
b ] 2J

hi
f ≥ fp

(38)
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k

Figure 5. Two monotonic, linearity-preserving generalizations of a quadratic limiter that lie between the TVD
and min limiter are shown, corresponding to (38) and (39). Each figure shows the mesh stretching ratios used.
The values a = .5, b = 2 correspond to a constant stretching ratio of 2. The values a = 2, b = 2 correspond to a
cell with a coarser cell on each side (analogously a = b = .5 corresponds to a finer cell on each side). The last
figure shows a more extreme ratio with b = 5. Both corrected limiters become van Leer’s quadratic limiter on
a uniform mesh.

Another possibility is

φ2DL =





fp

1+a [1− (1− f
fp

)1+a] 2J
hi

f ≤ fp

fp

1+b [1− (1− 1−f
fp

)1+b] 2J
hi

f ≥ fp

(39)

On a uniform mesh, where a = b = 1, and fp = 1/2, these both recover the usual van Leer quadratic form.
In figure 5 we plot these limiters for a variety of mesh ratios a and b. As the mesh stretching varies, the

location of the peak moves, so that linear functions will not be limited. With the variable exponent on the
modified limiters, they always lie beneath the TVD limit. In the next section we will show computational
experiments in one dimension examining their accuracy and monotonicity.
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E. One-Dimensional Experiments

We demonstrate graphically the monotonicity of the new limiter (38) and the lack of monotonicity of van Leer
without modification. In Appendix B we also include a study of the accuracy of the limiters on non-uniform
grids.

Figure 6. Results of advecting a square wave using the original non-monotone van Leer limiter (top row), and
the modified limiter (38) (bottom row), using 40 points in the unit interval. Snapshots are at 2, 4, 6 and 8
steps. Details of the experiment are given in Appendix B.

The irregular mesh consists of repeating blocks of 4 cells with mesh widths h, 2h, 10h and 11h. The time
step is chosen based on the smallest cell size, using a CFL of .9 and a 3-stage TVD Runge-Kutta scheme.
The initial conditions are a square wave. The sequence of plots in figure 6 show that the overshoots appear
and disappear, depending on whether the next cell is larger or smaller. By contrast, the new limiter preserves
monotonicity at all steps.

IV. Multidimensional Limiting

The one-dimensional formulations of the previous section are only a first step. In multiple dimensions,
the gradient is now a vector whose components may be limited componentwise in each direction or with a
single scalar. In addition, multiple dimensions introduces the possibility of mesh skewing along with mesh
stretching, adding complexity to the issues of monotonicity and linearity preservation.

Figure 7 shows simple two-dimensional examples illustrating problems that can arise. As previously
pointed out,16 on the three irregular meshes shown, linear data may be inadvertently limited, sacrificing
k-exactness and producing excessive dissipation. In each case, consider linear data such that the centroidal
values A and B are equal, (thus the gradient is normal to the line connecting them). The face centroid
C, on the face between A and B, will then be an extremum when compared to the cell averages. Since
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(a) (b)
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B
C A
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C
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Figure 7. In all three examples, linear data is not preserved by standard limiters. Let the line between cell
centers A and B be a level line of the solution. The flux evaluation and solution limiting occur at point C,
which is not on the line. Point C will look like an overshoot, and the exact gradient which was reconstructed
at A and B will be limited.

C is an extremum, the limiter will clip the gradients of both A and B. Without careful attention in the
implementation, this will happen regardless of which limiter is used, whenever the reconstructed point is not
exactly co-linear with A and B. Scalar limiters exacerbate this problem by clipping all components of the
gradient vector.

A. Directional Limiting and Gradient Rotation

Most finite volume implementations on unstructured grids use a scalar form of the limiter

uL = ui + φi~r∇ui. (40)

Here φ is a scalar slope limiter in cell i and ~r is the position vector from the cell centroid to the face. In
contrast, most structured techniques limit gradients on a direction-by-direction basis. Faces in x limit ux;
faces in y limit uy, etc. This component-wise limiting can be expressed as a matrix limiter where ¯̄φ is the
diagonal matrix ¯̄φ = Diag[φx, φy, φz], and (40) becomes

uL = ui + ~r ¯̄φ∇ui. (41)

Scalar limiters, while popular, are far more severe than their vector counterparts, since limiting triggered
by any face of a polyhedral cell degrades the gradient in all directions. Previous results1 show that even for
smooth flows, the scalar implementation is dramatically more dissipative than the directional form, making
it imperative to seek vector formulations.

While directional limiting is straightforward on cells with orthogonal faces, it is more subtle on general
meshes. The underlying difficulty stems from competing requirements of a face-by-face implementation that
still guarantee positivity. Figure 8 illustrates the situation for both cell types. The frames on the left of
Figure 8(a) trace the evolution of the gradient on a Cartesian cell, while the frames on the right examine
the process for a cell with non-orthogonal faces (in this case simply a triangle).

Following the evolution on the orthogonal cell in 8(a), frame 8(a.1) shows the monotonicity boundary
imposed by face 1. The directional implementation removes the component of ∇u normal to this face (shown
in red) resulting in the modified gradient ∇u′. In frame 8(a.2), the gradient is further reduced by removal
of the component of ∇u′ that extends beyond the monotonicity boundary established by face 2. Notice that
since faces 1 and 2 are orthogonal, the limiting in frame 8(a.2) retards the gradient while still respecting
the limit boundary from face 1. The limited gradient, ¯̄φ∇u resulting from this face-based implementation
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Figure 8. Illustration of the directional limiting process on a cell with orthogonal (a) and non-orthogonal
(b) faces. The “monotonicity region” (shaded in yellow) is more properly the “region of allowable gradient”
according to the chosen limiter. The final limited gradient must fall within in the yellow region.

sits on the perimeter of the monotonicity region (shaded yellow) in Figure 8(a.2). Since the boundaries in
this figure are imposed by one’s chosen limiter they are not strictly monotonicity boundaries. Similarly, the
“monotonicity region” is more properly the “region of allowable gradient” according to the chosen limiter.

By contrast with the Cartesian example, examine the result of this process on the general polyhedral
cell on the right of Figure 8. In frame 8(b.1) face 1 limits ∇u to ∇u′ by again removing the component
normal to the monotonicity boundary. In frame 8(b.2) we impose the corresponding limit from face 2. This
time, however, removal of the face normal component of the gradient produces a limited gradient ¯̄φ∇u which
violates the earlier boundary established by face 1, and the final limited gradient unfortunately lies outside
the monotonicity region for the cell. Inspection of the geometry Figure 8 makes it clear that this will be a
problem anytime adjacent limit boundaries form an acute angle with each other.

The reduction in dissipation and improved reconstruction properties offered by directional limiting1 gives
strong motivation to successfully implement them on general polygonal meshes. However, as the sketches in
Figure 8 demonstrate, this implementation is delicate. In essence, each new face must respect the boundary
of the monotonicity region established by all other faces. This can be posed as a clipping operation, an
implicit system of equations, or a linear programming problem. For each cell gradient, we seek the point
on the boundary of the monotonicity region which preserves as much of the unlimited gradient as possible.
Additional sweeps over the cell faces would be required to determine the limiter value which simultaneously
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respects the monotonicity boundaries imposed by all faces of general polyhedral cells. However on cells with
perpendicular faces, this system decouples and orthogonality ensures that limiting of one face will not exceed
a constraint boundary that has already been imposed.

B. Multidimensional Limiting as an LP Problem

The directional limiting problem outlined in the preceding section has an interesting formalization. The
sketches in Figure 8 highlight several important observations. The region of allowable gradient is bounded
by either the limit boundaries imposed by the cell faces, or by a sign constraint (which simply states that
the limiter does not change the sign of the gradient in any direction). Note also that any limited gradient
which is inside the monotonicity region will produce a monotone solution, however, we seek one which is
“closest to” the unlimited gradient. In other words, we seek the point on the boundary of the closed polygon
(polyhedron in higher dimensions) which minimizes in some measure the reduction of the original gradient
vector.

Figure 9. Directional limiting recast in LP framework. The limiter
on each cell face imposes technological constraints as shown on the
left. On the right, the final limited gradient is the optimal solu-
tion of the LP problem seeking minimize reduction of the gradient
vector over the monotonicity region.

Figure 9 sketches this reinterpreta-
tion. Examining this figure, it is clear
that the multidimensional limiting prob-
lem is exactly the description of a prob-
lem in linear programming (LP). This ob-
servation opens up a wealth of literature
with both exact and inexact possible so-
lution techniques.

The technological constraints of the
LP system are the limit boundaries im-
posed by any chosen limiter on each cell
face. On the ith face, in three spatial di-
mensions, this limit boundary can be ex-
pressed as

aixux+aiyuy+aizuz

(≥
≤

)
bi, i = 1, ..., m.

(42)
This is a linear equation in the compo-

nents of the gradient vector, where m is the number of cell faces. In addition, we have the sign constraints
saying that the limiter ¯̄φ can’t change the sign of the gradient,

φx ≥ 0 φy ≥ 0 φz ≥ 0 (43)

The objective function of the LP is to minimize the reduction in the gradient. In Figure 9, ~e is the error
vector - the amount of the gradient that must be removed so that ∇u − ~e = ¯̄φ∇u. We seek to preserve as
much of the gradient as possible, thus minimizing ~e.

minimize ‖e‖1 := |ex|+ |ey|+ |ez| = ux(1− φx) + uy(1− φy) + uz(1− φz) (44)

By using the L1 norm to measure the magnitude of the reduction in the gradient the problem stays linear.
Since (42) - (44) form a linear system of equations, the fundamental theorem of LP tells us that the

optimal value of the objective function must be at a corner of the region bounded by the constraints (42)
and (43). The sketch in the right frame of Figure 9 makes this clear as well with isoclines of the objective
function overlaying the region of allowable gradient, with the optimal solution at the upper right corner of
the monotonicity region.

This formulation gives important insight into multidimensional limiting. In the special case of Cartesian
constraint polygons, the constraint equations (42) decouple and thus the constraints from each face can be
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applied independently and in any order. This was implied by our earlier discussion of Figure 8 but is now
obvious. Scalar limiting is also an interesting special case. In one dimension it is the only choice, and yields
optimum solutions. In higher dimensions, however, a scalar limiter holds the direction of the gradient fixed,
thus the ratios of the coefficients in equation (42) are predetermined and only one of the constraints will be
binding. This is attractive since, again, the constraints can be applied one at a time. However, since the
vector is only free to vary along its length, the resulting limited gradient will be potentially far from the
optimum allowed by the LP problem, producing a monotone but excessively dissipative solution. For non-
Cartesian monotonicity polygons optimal solutions clearly require a coupled technique to determine which
of the feasible solutions to the LP problem is optimal.

C. An LP Formulation for Mesh Interfaces

As noted in the previous section, if the constraint polygon is Cartesian, the constraint equations (42) uncou-
ple, and the limit boundaries may be imposed one-by-one as in the directional process sketched in Figure
8a (left side) and still yield the solution to the LP problem. This seemingly narrow subclass of problems is
of particular interest on Cartesian and structured meshes. Not only can it be used in all the regular volume
hexahedra away from refinement interfaces, but with only a slight variation, it can be applied at Cartesian
mesh interfaces as well.

Figure 10. On the left is a typical mesh refinement interface in the x direction. On the right is its associated
monotonicity polygon.

The LP formulation can be used to analyze a simple approach that maintains linearity at mesh interfaces.
The left side of Figure 10 shows Cartesian cells on either side of a mesh refinement interface in 2D. The
constraint polygon for cell L is sketched in the frame on the right. The geometric picture is shown in Figure
10. In the figure, the original gradient ∇uL has been limited in the y direction by the north and south
neighbors, (i.e. (∇uL)′ satisfies the technological constraints at the top of the monotonicity region). The
remaining question is how to limit the x gradient, since the large and small cell centroids are not coordinate
aligned in this direction. We can accomplish this by using the already limited y gradient to safely recenter
the data in cell L to L′,

uL′ = uL + (∇uL)′ · −−→dL′L. (45)

After recentering, L′ may be thought of as a virtual cell center serving as a left state in the limiter evaluation
on the face between L and R. One can then apply any of the compact two-point limiters (min or Barth-
Jespersen) since they require no assumptions about what is happening to the left of cell L. For example,
applying the former on this face simply compares the x component of ∇uL with the one-sided slope between
R and L′,

φxux = min
(

ux,
uR − uL′

‖dRL′‖
)

. (46)
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This recentering allows us to implement a directional, vector limiter instead of the more common scalar
form. Alternatively one can define a cell to the left of cell L and use any of the stretched mesh formulas
from eqs.(38) or (39) to guarantee a positive state for the Riemann problem at the face.

This recentering procedure has a direct interpretation using the monotonicity polygon. In Fig. 10, once
the gradient satisfies the y constraints, it is retarded in the x direction only until the monotonicity boundary
coming from the interface is satisfied. To do this, we slide the tip of the gradient vector along the upper
boundary of the constraint polygon until it is at the northwest corner of the monotonicity region, leaving
the y gradient alone. Algebraically, this is equivalent to comparing the directional derivative (∇uL)′ · −−→dLR in
the direction between the centroids with the one-sided difference uR − uL. If the former exceeds the latter,
the necessary change is attributed completely to the x limiter. Algebraically, this gives

¯̄φ∇uL · n̄ =
uR − uL

dRL
(47)

φxux
dRL′
dRL

+ uy
dL′L
dRL

=
uR − uL

dRL
(48)

φxux =
(uR − uL − dL′Luy)

dRL′
, (49)

and (49) is equivalent to the recentering equation (46) above.

D. An LP Interpretation of Scalar Limiting

As noted in section IV.B, scalar limiting can be viewed as a second special case of the LP formulation of
multidimensional limiting. In the scalar case, the direction of the gradient vector is held fixed, and the only
feasible solution is the intersection of the gradient vector with the constraint polygon. Since the constraint
polygons are convex, this implies only one intersection, and thus only one of the constraint equations (42) is
binding. For edge or face-based data structures this is extremely attractive. Ultimately only one face sets
the limiter’s value, and this final value is unique regardless of the order in which the constraints are applied.

For general unstructured meshes, scalar limiting obviously adds excessive dissipation since it reduces the
gradient vector more than is optimal. However the simplicity of implementation makes it worth another
look. In a Cartesian mesh with embedded boundaries there are only O(N2) cut cells in a volume mesh with
O(N3) total cells. Motivated by these kinds of counting arguments we include results in the next section
using a linearly-exact form of scalar limiting for this lower dimensional subset of mesh cells. Referring to
the sketch in figure 7a, a linearly-exact scalar min limiter may be implemented by comparing the projection
of the gradients in cells A and B with the directional derivative uB−uA

||d̄AB || . If the projection of either cell’s
gradient exceeds this directional derivative, then all components of that cells’ gradient are reduced to remove
the excess. Note that this is not the standard implementation of scalar limiting. Normally the solution is
reconstructed to the face centroid, which is not generally on the line connecting the cell centroids.

V. Computational Experiments

Numerical experiments designed to support the discussion in the previous sections are presented. The
computations use a parallel, multi-level Cartesian solver for the Euler flow equations.17 The Onera M6 wing
computed at Mach 0.5, and α = 3.06◦ provides an attractive test case. Since strong shocks do not form at
these conditions, limiters are not required to maintain positivity, allowing direct comparison of results with
and without limiters. Further, the inviscid flow is irrotational and hence the theoretical value for the drag
is zero. In numerical simulations, the sharp trailing edge of the wing produces a small but finite drag value.

Figure 11 shows the Cartesian computational mesh and sample pressure contours for the Onera M6
calculated without limiters (φ = 1 everywhere). The mesh contains 301K cells, with roughly 21K cut cells
adjacent to the embedded boundary, and 88K interface faces with 2:1 mesh refinement, for roughly 110K
interface cells.
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Figure 11. Onera M6 mesh and sample pressure contours
calculated without limiters (M∞ = 0.5, α = 3.06◦).

The use of a Cartesian mesh allows us to
isolate the effects of different limiter formula-
tions. In the first experiment, the standard
limiter applied in the regular hexahedra is var-
ied, while holding the limiter in the interface
and cut cells fixed. In the interface cells the re-
centering min formulation (45) is applied, and
in the cut cells the limiter is forced to φ = 0 to
isolate the effects of the field limiters on con-
vergence. Table 1 presents the computed drag
using each of the limiters presented in (8). The
computed results show an increase in drag cor-
responding to the increasing dissipation asso-
ciated with the limiter. The unlimited calcu-
lation provides the minimum drag possible for
this combination of solver and mesh. The con-
vergence properties (L1 norm of density resid-
ual) of the standard limiters are presented in
figure 12. Five levels of a full multigrid scheme
are used. Since the coarse levels are first order,
the startup behavior for the first four levels are identical. All simulations show good convergence, with the
exception of the calculation using the Barth-Jespersen limiter, which stalls after converging roughly three
orders of magnitude. This behavior with BJ is well documented.1,2
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Figure 12. Convergence in the L1 norm of

the density residual for subsonic OneraM6

wing example (M∞ = 0.5, α = 3.06◦).

Table 1. Computed drag for different

limiter formulations in the regular hexa-

hedra, in order of increasing dissipation.

Limiter Type Drag Coefficient ×103

No limiter 3.24
BJ limiter 4.56
VL limiter 5.41
Sin limiter 5.59
VA limiter 6.15
Min limiter 8.15

A similar comparison is presented to illustrate the behavior of the recentering procedure presented in
section IV.C. The subsonic Onera M6 wing is computed using the scalar BJ limiter, along with the recentering
procedure implemented using the BJ and min limiters. The scalar BJ reconstructs to the face centroid, and
reduces the value if it exceeds the neighboring centroid value. The regular hexahedra use the van Leer
limiter, while the cut cells are again forced to φ = 0. Recall that BJ and min are the only compact two-point
limiters in (8). Implementation of the recentering approach for the stretched mesh form of the limiters (38)
is left for future work. Table 2 presents the computed drag varying only the interface limiters. As before,
the increase in drag correlates with an increase in numerical dissipation. The recentering procedure reduces
the dissipation over the scalar procedure. Simply changing the implementation from scalar to recentered

17 of 22

American Institute of Aeronautics and Astronautics Paper 2005-0490



May, 2005 NAS Technical Report NAS-05-007

directional in the interface cells reduces the drag by nearly 14 counts. The recentering procedure improves
the convergence history as well, as shown in figure 13. The convergence of the scalar implementation stalls
after 3 orders, while the recentered implementation has good convergence properties.
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Figure 13. Convergence in the L1 norm of

the density residual subsonic OneraM6 wing

example (M∞ = 0.5, α = 3.06◦).

Table 2. Computed drag for different

limiters in the 2:1 interface cells.

Limiter Type Drag Coefficient ×103

No limiter 3.24
Recentered BJ 5.24
Recentered Min 5.41

Scalar BJ 6.60

The recentering procedure is effective at interfaces since the limiting of the transverse directions can be
done first. For general polyhedra this approach can not be applied directly. Table 3 presents instead the
computed drag using the scalar min limiter in the cut cells, compared against unlimited and first-order cut
cell results. Using scalar min in the cut-cell polyhedra stalls convergence in the density residual, similar to
the results using scalar BJ at the interfaces. The discussion above demonstrates that the van Leer limiter in
the regular hexahedra, and the recentered min limiter in the interface cells both converge. Thus, the limiter
chatter is caused by the scalar min implementation in the cut cells, even though this limiter is monotone and
linearity-preserving. Note that the scalar limiter does not anchor the limited gradient vector at a corner of
the monotonicity polygon, unlike the recentered min procedure used in the interface cells, which does. One
hypothesis is that the gradient vector is rotating excessively from iteration to iteration, generating low-level
chatter. An optimal solution to the LP problem in these cells would tie the gradient to a corner of the
positivity polygon, and possibly reduce the noise. This hypothesis is currently being tested by solving the
full LP problem in the cut cells.

Table 3. Computed drag using different limiters in the
cut cells.

Limiter Type Drag Coefficient ×103

No limiter 3.24
Scalar Min 4.72

1st order cut cells 5.41

In the final example, we demonstrate the perfor-
mance and robustness of the limiters and flow solver
for a practical application. We use the van Leer lim-
iter in the regular hexahedra, the recentered min at
the interfaces, and the scalar min in the cut cells.
These were applied in the same fashion as in the
Onera example without any tweaking. We compute
the flow around the space shuttle orbiter at a free
stream Mach number of 18.5, and angle of attack
15 degrees. The computational mesh contains 1.8M
cells. This example used a 3 level multigrid W cy-
cle. Gradients were evaluated at every stage of a
five stage Runge-Kutta scheme. Figure 14 shows

flow features that include strong shocks, regions of separated flow, and rapid expansions. The density and
pressure at the back of the shuttle (in the engine bells and OMS pods) gets as low as 10−7 times the non-
dimensional free stream quantity. The pressure on the orbiter’s nose is nearly 450 times that in the free
stream, a range of nearly eight orders of magnitude. Figure 15 shows the convergence history of the residual
and the forces for this case. As before, convergence stalls after 3 orders of magnitude.
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VI. Conclusions

We have reviewed and analyzed common forms of slope limiters, highlighting their shortcomings for
practical application. The shortcomings are the failure of traditional implementations to preserve linear
solutions in the presence of mesh stretching or other irregularities, and a lack of a clear extension to multiple
dimensions. The main contributions of this paper are the analysis of limiters in one dimension on non-
uniform grids, and an LP formulation with which to analyze the general multidimensional case. Future
work will use this formulation to test directional limiters that maintain monotonicity and do not need to be
followed by a positivity test. The performance of all the limiters were demonstrated in three dimensional
applications using a Cartesian embedded-boundary method.
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Figure 14. Orbiter calculation using 1.8M cell mesh, Mach 18.5 at 15 degrees angle of attack. The contours
show the log of pressure. The left figure also shows some streamlines of the flow in black. Both the complex
geometry and complicated physics of the flow field are apparent.
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Appendix A: Face-Based Limiting

In this appendix we show why face-based limiters is ineffective. We also show that face-based limiting
is equivalent to a common technique of maintaining positivity ”on-the-fly”, which helps explain why this
practice does not deliver as much robustness as one would hope.

x

u

i i + 1i – 1

∆c
∆+

∆ –

Figure 16. Initial piecewise constant solution
for counter-example showing that face-based
limiting (or thresholding of reconstructed
data) does not preserve monotonicity. All gra-
dients are zero except at cell i.

Face-based limiting was proposed over a decade ago
in hopes of reducing dissipation, but does not work well
in practice.1 This approach applies a limiter face-by-face
on each cell. Each face limits the reconstructed value as
suggested by the limiter, but without actually modify-
ing the gradient of the cell. At another face the original
gradient may still be used. Many solvers have adopted
a variant of the face-based approach in search of greater
robustness. It is common practice to set a floor on the re-
constructed values of density, pressure or internal energy
to avoid taking the square root of a negative number in
the Riemann solver. This situation can arise for exam-
ple when the limiting is driven by one set of data, and
the reconstruction is evaluated at another set of values.
When the non-positive state is discovered, it is too late
to modify the gradient. These cases are typically treated

by thresholding the reconstruction to prevent the non-physical state. In essence, this is face-based limiting:
the reconstruction is modified, and the other faces sharing the cell are unaware of the modification.

Let u be a step function as shown in Figure 16 on a uniform grid. For linear advection, ut + ux = 0,
the update at cell i using a second-order upwind difference in space (so the upwind state is on the left) and
face-based limiting gives

un+1
i = un

i −
∆t

h
(uL

i+1/2 − uL
i−1/2)

= un
i −

∆t

h
(uL

i+1/2 − un
i−1) (50)

= un
i − λ((un

i + h/2 φR Dci)− un
i−1),

where φR is the value of the limiter on the right face of cell i, and Dci is the central difference in cell i. Note
that the forward difference D+ui = ui+1−ui

h > Dci, so the reconstruction at the right edge will not exceed
the value ui+1 and will not need to be limited using BJ. Thus φR = 1 so

un+1
i = un

i − λ(ui + h/2
(ui+1 − ui−1)

2h
− un

i−1)

= un
i − λ(ui − ui+1/4 + ui−1/4− ui−1)

= un
i − λ(1/4 ui+1 + ui − 5/4 ui−1) (51)

= un
i − λ(ui+1/4− ui−1/4) since ui−1 = ui

< un
i since ui < ui+1

In other words, there will be an undershoot at ui at the next time step. As this example shows, the face
with the largest change in the solution is responsible for limiting sufficiently for the other face. While it
occurs naturally for symmetric limiters satisfying (7), this symmetry property is violated in the face-based
implementation.
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Appendix B: Accuracy Study on One-Dimensional Non-Uniform Grids

We demonstrate the accuracy of the one-dimensional limiters (38) for non-uniform grids by advecting a
Gaussian periodically on the unit interval. A three stage TVD Runge-Kutta scheme is used to advance the
solution until time t = 1. The gradient is approximated using the least squares approach (21).

Several types of irregular meshes are employed. A randomly perturbed irregular mesh is generated by
choosing N uniform random variables between 0 and 1 for the mesh widths, then scaling them all so that
the length of the interval is 1. Also, mesh widths less than 10% of the corresponding uniform mesh width
are thrown away, so that a reasonable time step with a CFL number of .9 can be maintained. A block cyclic
mesh (Block 1 in the table) is generated using repeating blocks of mesh widths h1, h2, h3, h4. In the first
case, the mesh widths are equal to dx, 2dx, 3dx, 4dx for an appropriately chosen dx that discretizes the unit
interval. The more extreme cyclic mesh (Block 2) uses mesh widths equal to dx, 2dx, 10dx, 11dx, where this
time dx = 1/(24 ·#pts). This is the mesh used in the calculations presented in figure 6.

Table 4. Relative error in the L1 norm for various limiters applied to scalar advection on a non-uniform mesh.
The errors increase with increasing mesh irregularity as well as dissipativity. The corrected van Leer limiter
is more accurate than the original formulation in all cases.

Limiter Type Uniform Random Block 1 Block 2

No limiter (20 pts) 12.19 % 13.56 % 13.27 % 19.47%

No limiter (40 pts) 2.96 % 3.51 % 3.07 % 4.48 %

No limiter (80 pts) .69 % .81 % .73 % .68 %

No limiter (160 pts) .17 % .20 % .18 % .12 %

BJ limiter (20 pts) 11.49 % 14.12 % 14.38 % 23.94 %

BJ limiter (40 pts) 3.00 % 4.40 % 3.96 % 7.72 %

BJ limiter (80 pts) .86 % 1.21 % 1.14 % 1.85 %

BJ limiter (160 pts) .24 % .32 % .31 % .48 %

VL limiter (20 pts) 13.27 % 16.21 % 17.22 % 27.95 %

VL limiter (40 pts) 3.83 % 5.35 % 5.76 % 11.24 %

VL limiter (80 pts) 1.11 % 1.64 % 1.86 % 4.60 %

VL limiter (160 pts) .31 % .52 % .69 % 2.10 %

Corrected quad. limiter (20 pts) 13.27 % 15.97 % 16.20 % 24.35 %

Corrected quad. limiter (40 pts) 3.83 % 5.30 % 4.98 % 8.33 %

Corrected quad. limiter (80 pts) 1.11 % 1.63 % 1.57 % 2.37 %

Corrected quad. limiter (160 pts) .31 % .44 % .42 % .64 %

Min limiter (20 pts) 24.68 % 25.74 % 25.20 % 34.04 %

Min limiter (40 pts) 9.43 % 9.58 % 9.39 % 13.47 %

Min limiter (80 pts) 3.42 % 3.12 % 3.06 % 4.23 %

Min limiter (160 pts) 1.18 % 1.02 % 1.01 % 1.51 %

The Gaussian y = e−25(x−.5)2 is advected for one period. Table 4 compares the error and convergence
rates for three limiters, the original van Leer, our revised formulation using (38), and the min limiter, as
well as a computation that does not use limiters. For comparison, we also include the error of a uniform
grid computation with the same number of points. As expected for this smooth solution, the unlimited
solution is the most accurate, and has the best convergence rate. On slightly perturbed meshes the new
formulation is slightly better. On extreme meshes, it is much better. Thus, there is no penalty for using
the new formulation, in some cases it is much better, and the new formulation is preserves monotonicity.
The min limiter is included in this tableto bracket the error, since we expect that the more dissipative the
limiter, the greater the error. The BJ limiter, since it limits the least, is more accurate than van Leer.
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